|
The Euler’s pump and turbine equations are most fundamental equations in the field of turbo-machinery. These equations govern the power, efficiencies and other factors that contribute in the design of Turbo-machines thus making them very important. With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century.〔See: * Euler (1752) ("Maximes pour arranger le plus avantageusement les machines destinées à élever de l'eau par moyen des pompes" ) (Maxims for arranging most advantageously machines intended to raise water by means of pumps), ''Mémoires de l'Académie Royale des Sciences et des Belles Lettres à Berlin'', 8 : 185-232. Here, Euler presents his results for maximizing the outputs of windmills and water wheels, among other means of powering pumps. * Euler (1754) ("Théorie plus complette des machines qui sont mises en mouvement par la réaction de l'eau" ) (More complete theory of machines that are set in motion by reaction with water), ''Mémoires de l'Académie Royale des Sciences et des Belles Lettres à Berlin'', 10 : 227-295. An analysis of Segner's wheel. * Euler (1756) ("Recherches plus exactes sur l'effect des moulins à vent" ) (More exact research on the effect (work output ) of windmills), ''Mémoires de l'Académie Royale des Sciences et des Belles Lettres à Berlin'', 12 : 166-234.〕 These equations can be derived from the moment of momentum equation when applied for a pump or a turbine. == Conservation of angular momentum == Another consequence of Newton's second law of mechanics is the conservation of the angular momentum (or the “moment of momentum”) which is of fundamental significance to all turbomachines. Accordingly, the change of the angular momentum is equal to the sum of the external moments. Angular momentums ρ×Q×r×cu at inlet and outlet, an external torque M and friction moments due to shear stresses Mτ are acting on an impeller or a diffuser. Since no pressure forces are created on cylindrical surfaces in the circumferential direction, it is possible to write Eq. (1.10) as: ::: (1.13) : : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Euler's pump and turbine equation」の詳細全文を読む スポンサード リンク
|